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A new index for analysis of single-case research data was
proposed, Tau-U, which combines nonoverlap between
phases with trend from within the intervention phase. In
addition, it provides the option of controlling undesirable
Phase A trend. The derivation of Tau-U from Kendall's
Rank Correlation and the Mann-Whitney U test between
groups is demonstrated. The equivalence of trend and
nonoverlap is also shown, with supportive citations from
field leaders. Tau-U calculations are demonstrated for
simple AB and ABA designs. Tau-U is then field tested on
a sample of 382 published data series. Controlling
undesirable Phase A trend caused only a modest change
from nonoverlap. The inclusion of Phase B trend yielded
more modest results than simple nonoverlap. The Tau-U
score distribution did not show the artificial ceiling shown
by all other nonoverlap techniques. It performed reasonably
well with autocorrelated data. Tau-U shows promise for
single-case applications, but further study is desirable.

nonoverlap models versus regression
models

Single-case research (SCR) has received renewed
interest in the behavioral sciences for its focus on
change within an individual rather than change in
the group aggregate (Borckardt et al., 2008).
Statistical analysis for evaluating change in SCR

designs are still in an early stage of development.
Ordinary least squares regression analysis (OLS)
with a long history of use in large N studies, has
shown unequalled flexibility and power when
applied to SCR data (Allison & Gorman, 1993;
Busk & Serlin, 1992; Parker & Brossart, 2003).
However, OLS has been criticized for failing to
address the unique constraints of short time series
data that are typical in SCR (Parsonson & Baer,
1992; Scruggs & Mastropieri, 1994). OLS is a
parametric statistical test, and as such requires a
normal score distribution, constant variance, and
interval level measurement. Applying OLS to SCR
data has been criticized because these data often do
not meet OLS assumptions of constant variance,
normality, and linearity of relationship, and the
scaling assumption of at least an interval-level scale
(Cohen & Cohen, 1983; Kutner, Nachtsheim &
Neter, 2004). These problems notwithstanding,
only OLS analysis has to date been able to
demonstrate (a) control of undesirable positive
baseline trend; (b) sensitivity to improvement in
level change trends; (c) adequate power for short
data series; and (d) the ability to discriminate well
among published data sets, avoiding ceiling or floor
effects. All nonoverlap indices suffer from a ceiling
effect of 100%; they are insensitive to amount of
separation of data contrasted between two phases
beyond the point where there is no overlap.
At least four regression models have been

designed to do those four things, which are
summarized in texts by Franklin, Allison, and
Gorman (1997), and Kratochwill and Levin
(1992). They are (a) Crosbie's ITSACORR model
(1993, 1995); (b) the Last Treatment Day prediction
technique of White, Rusch, Kazdin, and Hartmann
(1989); (c) Center, Skiba, and Casey's (1985–1986)
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mean-shift and mean-plus-trend family of models;
and (d) Allison et al.'s mean-shift and mean-plus-
trend models (Allison & Gorman, 1993; Faith,
Allison, & Gorman, 1997).
Crosbie's ITSACORR (1993, 1995) was posi-

tively cited by several researchers for a decade, but
used infrequently, and has suffered two major
setbacks. First, the experience of several researchers,
including ourselves, was that its results bore
little relationship to those from other models.
Furthermore, ITSACORR results were not sub-
stantiated by visual analysis. Finally, the statisti-
cian Brad Huitema (2004) described “fatal flaws”
in the model, in response to which Crosbie
officially retired it: “I trust Brad's scholarship, so
effective immediately ITSACORR is officially
retired…. Now it's dead, and will soon be
replaced” (Southerly, 2006).
The last treatment day (LTD) prediction tech-

nique of White et al. (1989) extended the baseline
trend clear to the end of the treatment period; the
“last treatment day.” The predicted value at LTD
was differenced from the LTD value predicted (as a
Yhat score) from the Phase B trend line alone, and
the two predicted values at LTD were subtracted.
The standard error of the difference was calculated
for the two predicted scores. A Cohen's d effect size
was then calculated from their difference divided by
the pooled standard error term. Two flaws of this
model were (a) linear prediction from Phase A to
the end of Phase B resulted in extreme scores and
extreme differences, and therefore, extreme effect
sizes; and (b) the statistical power of the technique
was quite weak due to the large error involved in
predicting an individual score far into the future, to
the end of Phase B (Parker & Brossart, 2006).
Applied regression texts commonly warn that
prediction of scores into the future is hazardous,
even with large data sets and short-term predictions
(Neter, Kutner, Nachtsheim, &Wasserman, 1996).
Center et al.'s (1985–1986) method marked a

new level of sophistication, including both mean
shift and trends in a single index, while controlling
trend. However, in attempting to control positive
baseline trend, Center's method also undesirably
controlled some trend from the intervention phase.
Center's method was critiqued and improved on by
Allison, Faith, and colleagues (Allison & Gorman,
1993; Faith et al., 1997), whose model controlled
only Phase A trend, but extended through the entire
data series. The Allison et al. model is considered by
most to be the leading OLS approach. It has proved
itself in several published studies and at least two
meta-analyses (Allison & Gorman, 1993).
Nonoverlap or “dominance” (Sprent & Smeeton,

2007) indices of improvement are based on

comparisons of individual data points across two
groups (two phases). Nonoverlap does not summa-
rize the difference between central tendency (mean,
median, or mode), but rather the separation of the
two “data clouds,” giving equal attention to all
data points. The “dominance” of one data cloud
over another is its degree of elevation above the
other on a vertical score axis. Judging data overlap
between phases has been a part of visual analysis
since at least the 1960s, along with judging data
trend (Cooper, Heron, & Heward, 1987; Johnston
& Pennypacker, 1993; Kazdin, 1982). Nonoverlap
was first measured statistically in the mid-1980s
(Scruggs, Mastropieri, & Casto, 1987), and in the
past two decades nonoverlap techniques have
increased in number and refinement (Parker &
Vannest, 2009; Parker, Vannest, & Brown, 2009).
Nonoverlap methods vary mainly in how ties
(across phases) are handled, and how overlapping
versus nonoverlapping data pair counts are com-
bined. However, all complete nonoverlap indices
have in common the pairwise comparison of
individual data points across Phases A and B, to
determine “dominance” of one score set over the
other (Cliff, 1993). The most recently published
nonoverlap method, termed NAP (nonoverlap of all
pairs) can be derived from Sommer's d, or from a
receiver operator curve (ROC) analysis as area
under the Curve (AUC; Parker & Vannest, 2009).
NAP equals percent of nonoverlapping data. The
new method demonstrated in this paper, derived
from Kendall's Rank Correlation (Kendall &
Gibbons, 1999), is the percent of nonoverlapping
data minus the percent of overlapping data. In other
respects, NAP and this new method are equivalent.
Besides its long use as part of visual analysis,

and its user-friendliness (often carried out with
pencil and ruler), nonoverlap has other strengths.
First, nonoverlap methods are “distribution free,”
not requiring interval-level measurement or a
linear relationship between time and scores, nor
requiring constant variance or a normal distribu-
tion (Armitage, Berry, & Matthews, 2002). Non-
overlap methods also are robust or resistive to the
undue influence of outlier scores, a particular
strength in client-based research where “bouncy”
scores are common. Furthermore, in some data
sets the nonoverlap or “dominance” of one phase
over another is a better, more sensitive summary
than is mean or even median difference (Cliff,
1993; Huberty & Lowman, 2000). When scores
are severely skewed, are bi- or tri-modal, or
otherwise lack central tendency, a mean or median
is not a good distribution summary (Wilcox, 2001).
In those cases it makes more sense to consider all
data points equally, as a dominance summary does.
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Although nonoverlap methods are “distribution
free” (Cliff, 1993), they are held to the standard of
serial independence or lack of autocorrelation
(rauto), which applies to residual scores from an
analysis. The serial independence requirement
makes the exception for linear trend (which is
100% autocorrelated), as that is desired and
expected in most time series data (Neter et al.,
1996). The best evidence to date is that one third or
more of published data sets from SCR designs are
positively autocorrelated to an undesirable degree,
with rauto N .20 or .25, regardless of p value (Matyas
& Greenwood, 1996; Parker, Cryer, & Byrns,
2006; Sharpley & Alavosius, 1988; Suen & Ary,
1989). Data rauto is an important consideration in
SCR data analysis and should be calculated and
controlled. Several methods are currently available
to accomplish this task, including simulating rauto in
a data set and testing its significance through
resampling or bootstrap (Borckardt et al., 2008);
however, the best established method for control-
ling rauto is back casting with an autoregressive
integrated moving average model (ARIMA) AR1
(1, 0, 0) model (Box & Jenkins, 1976; Glass,
Willson, & Gottman, 1975; Jones, Vaught, &
Weinrott, 1977). ARIMA finds solutions iteratively
throughmaximum likelihood methods. But because
ARIMA can be cumbersome, it is rapidly being
replaced by methods seamlessly integrated into
regression software. SAS software contains no less
than 10 such methods, and four of the most popular
methods are recently included in the qGNU
Regression, Econometric and Time-Series Libraryq
(GRETL; Cottrell & Lucchetti, 2009) software,
freely downloadable from http://gretl.sourceforge.
net/. Among the most favored is the generalized
least squares Prais–Winsten (Prais & Winsten,
1954) method, based on the earlier, more primitive
Cochrane–Orcutt method (Cochrane & Orcutt,
1949). The Prais–Winsten is a strong form of the
more general Yule-Walker or qtwo-step full trans-
form methodq (Harvey, 1981). Also still used is a
relatively primitive nonlinear least squares method,
the Hildreth–Lu (Hildreth & Lu, 1960), which was
improved on by the qnonlinear least squaresq (NLS)
method by Spitzer (1979). Comparative tests have
concluded that the maximum likelihood ARIMA
procedure (Box & Jenkins, 1976) is still the
standard, and for small samples, the Prais-Winsten
comes closest to that standard (Harvey, 1981;
Harvey & McAvinchey, 1978; Judge, Griffiths,
Hill, & Lee, 1985; Park & Mitchell, 1980). In this
study, the best validated rauto control method was
used, the ARIMA AR1 (1, 0, 0) model.
A new analytic method such as Tau-U should

show robustness to rauto; that is, its magnitude and

significance of results should not vary greatly under
varying levels of rauto. For SCR practitioners, an
equally important standard of robustness is that
rauto should minimally distort graphed data. If
removing or qcleansingq rauto greatly distorts
graphed data, it will prevent visual analysis,
disallowing mutual validation by statistical and
visual analysis. Cleansing data of rauto should
therefore minimally impact visual analysis. Most
evaluations of robustness of statistical methods
include the stability of standard error (SE) under
various rauto conditions. But that is not possible
with Tau-U (or simple Tau), as its SE is based solely
on the number of data points, which do not change
under various levels of rauto.
Despite its strengths, nonoverlap analysis is not

best for some data series because it is insensitive to
data trend. Trend is visually apparent in much
graphed data, and is important to conclusion
validity in two main ways. First, positive trend in
the intervention phase is a valued measure of
improvement not captured by mean shift or
nonoverlap measures. Positive slope in the inter-
vention phase suggests the likelihood of further
improvement in the future, which is generally
hoped for. Second, undesirable “preexisting” pos-
itive trend in the baseline phase suggests the client
would have improved even without the interven-
tion. Ignoring positive baseline trend risks errone-
ous conclusions about the cause of change. Current
nonoverlap models cannot include baseline trend,
as can the Allison et al. regression model (Allison &
Gorman, 1993; Faith et al., 1997).

problems in baseline trend control

Although the Allison et al. regression model (Allison
& Gorman, 1993; Faith et al., 1997) does control
for undesired baseline trend, unresolved issues still
exist. The Allison et al. correction method involves
semipartialling Phase A trend from the full original
data set. But frequent users of the Allison et al.
method encounter problems, some of which are
demonstrated by an example (or “mis-example”)
data set, used throughout this paper.
Fig. 1a presents a short, simple AB design, with

data points A: 2, 3, 5, 3 and B: 4, 5, 5, 7, 6. Means
are A: 3.25 and B: 5.4. Regression slopes are A: .50
and B: .60. In Fig. 1a, the Phase A trend line has
been extended through Phase B. This depicts the
first step in the Allison et al. regression-based
control (Allison & Gorman, 1993; Faith et al.,
1997). Fig. 1b shows the transformed data following
Phase A trend removal through semipartialling
the prediction line from the original scores. These
figures show that regression trend control is a
powerful corrective. By controlling Phase A trend,
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the mean level of Phase B has been reduced below
that of Phase A (Fig. 1b). Four concerns can be
inferred from this example: (a) unreliability of Phase
A trend, (b) no consideration of Phase A length, (c)
questionable assumption that trend will continue,
and (d) unintuitive mean comparisons after trend
control. And a fifth problem not visible in this
example is (e) no rational limits to change. Some of
these interrelated problems have been previously
identified (Scruggs & Mastropieri, 1998, 2001).

Unreliability of Phase A Trend
Extending Phase A trend into Phase B assumes a
trustworthy Phase A trend line slope. That is
because semipartialling Phase A trend is executed
without regard to trend error. Most would visually
judge that the Phase A trend in Fig. 1 is not
pronounced or credible. In fact, its p value is only
.49, and its slope has very wide confidence intervals
(CI), spanning zero ( 85%CI is –.85, 1.85). Though
lacking credibility, controlling it has considerable
impact, both visually and on statistical results. The
best solution to this dilemma appears to be carefully
selective in when to apply baseline trend control. It
should be applied only when Phase A trend is
pronounced and statistically significant.

No Consideration of Phase A Length
Regression control of Phase A trend occurs without
regard to Phase A length. Controlling Phase A trend
from a phase of 5 or from 45 data points will have
the same impact on Phase B data. Yet within a short
baseline phase, the trend lacks credibility. A
published SCR study may have a short baseline of
6 data points, followed by a longer intervention
phase of 15 or 20 data points. In that case, Phase A
trend control influence on Phase B data would seem
excessive. A potential correction to this problem is

to limit the application of baseline control to only
longer A phases.

Questionable Assumption That Trend Will
Continue
An assumption underlying trend control is that
without intervention Phase A trend would continue
unabated through Phase B. But that assumption
may not be accurate. We examined a convenience
sample of 160 published AB data sets, all of which
had at least 10 data points in Phase A, to locate 34
with strong baseline within the first five data points
trends (all at p≤0.05). To what extent did those
strong trends continue through the next five data
points (for a total of 10)? Thirteen of the 34 series
(38%) were no longer significant at .05 and 10 were
not significant at p=.10, even with the benefit of
double the data points (10). In fact, the first five
and second group of five data points in a data set
bore little relationship to one another in trend. And
what about those data sets where the first five data
points lacked trend; did their next five data points
show more trend? They did not, which suggests
that the normal state of affairs for baselines is little
or no trend, and measured baseline trend might be
more apparent than real. Though far from
conclusive, this finding raises doubts about the
assumption of baseline trend and its routine
control. To our knowledge this issue has not been
formally studied.

Unintuitive Mean Comparisons after Baseline
Trend Control
Results following trend control are rarely graphed,
yet they should be. Visual analysts need access to
data plots, and that includes the effects of baseline
trend control. Figs. 1a and b show results of
baseline trend control that are mildly problematic.
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FIGURE 1 Example data set with (a) an illustration of control limitations, and (b) transformed data following
Phase A trend control.
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Visual analysis of Fig. 1a indicates a rise in original
data mean level, whereas Fig. 1b indicates a drop in
mean level. To many, the conclusion of mean-level
deterioration is not intuitive. The only present
remedy may be to warn users that Phase A trend
control transforms data to a point where visual
analysis is no longer appropriate.

No Rational Limits to Change
The effects of baseline trend control also undesir-
ably depend on Phase B length. Given longer B
phases, Phase A trends tend to be projected outside
the limits of the y-axis score scale, and resulting
effect sizes will be unrealistically extreme. This
predicament underscores the unbridled power of
the control technique, which presently seems to be
without a good solution. A partial remedy sug-
gested has been to manually reset extreme predicted
scores to within scale limits (Allison & Gorman,
1993). However, that sets artificial ceilings on effect
sizes and violates the constant variance assumption.
An improved baseline trend control technique

should have rational limits imposed on its impact.
Rational limits could be based on the reliability of
Phase A, Phase A length, and/or the length of Phase
B. Baseline control presented in this paper within
Tau-U does have rational limits on its impact.

combining trend and nonoverlap

Mann-Whitney U
Common ground exists between data trend and
nonoverlap in the nonparametric sampling distri-
bution of “Kendall's S.” The S distribution is the
foundation for two established statistics: the Mann-
Whitney U (MW-U) test of “dominance” or
nonoverlap between two groups, and the Kendall
Rank Correlation (KRC) coefficient. MW-U and
KRC usually are employed to answer quite different
research questions, and are applied to differently
structured data sets. MW-U is an index of group
(phase) difference in level (dominance), whereas
KRC is a correlation index between paired score
series. The MW-U computational algorithm first
combines scores from two groups for a cross-group
ranking. Those rankings are then separated and
statistically compared for mean difference in ranks.
This mean difference of ranks produces identical
results to a pairwise comparison of all scores across
groups (dominance). KRC uses the same algorithm
for trend within a single group (Conover, 1999;
Kendall & Gibbons, 1990), and produces identical
results to MW-U if instead of two continuous
variables (scores and time), the time variable is
replaced by dummy codes (0 / 1) representing
phases. The identity of MW-U and KRC permits

nonoverlap and trend to be included within a single
measure.
MW-U outputs two U values, larger (UL) and

smaller (US), of which the smaller is typically
tabled in texts for inference testing. Their difference
equals Kendall's S (S=UL – US), which is the test
statistic for significance of both MW-U and KRC
(Hollander & Wolfe, 1999). Nonoverlap, or
“percent of nonoverlapping data,” can be calcu-
lated as the difference of the two U values divided
by their sum: (UL – US) / (UL + US); (Parker &
Vannest, 2009). This formula can be simplified to:
S / (UL + US), since S=UL – US. The denominator,
UL + US equals the total number of pairwise
comparisons possible between two phases (two
groups). That number is the product of the two
group N (n1 × n2), so for phases of 5 and 7 data
points, the number of paired comparisons is
5×7=35. The MW-U nonoverlap statistic thus
simplifies further to S / #pairs, which is literally “the
proportion of pairwise comparisons that improve
from Phase A to B,” simplified to “the percent of
nonoverlapping data between Phases A and B.”

Kendall Rank Correlation
Kendall Rank Correlation (KRC) of two matched
data series is presented in textbooks as quite
different from MW-U, though their essential
sameness is core to this paper. Underlying a KRC
analysis on time and score is a simple algorithm.
Scores are time ordered, and then all possible pairs
of score data points are compared, in a “time-
forward direction.” Each pairwise comparison of
scores is coded: (a) positive or improving over time
(+), (b) negative or decreasing (–), or (c) tied (T).
The total number of pairs is N(N – 1) / 2, where N
equals the number of original scores. So a series of
8 scores has (8×7) / 2=28 pairwise comparisons. S
is calculated as the difference between the number
of positive and negative codes: = #pos – #neg.
Kendall's Tau equals S divided by the total number
of pairs:=S / #pairs. For time–series data, Tau is
therefore “the percent of all data pairs that show
improvement over time,” or more colloquially,
“the percent of data that improve over time.”
Thus, for single-case research, KRC measures
“trendedness” or the “tendency for scores to
improve over time.” Tau's direct interpretation is
an asset over indices with more oblique interpreta-
tions such as Spearman Rho or least squares R or
R2 (Conover, 1999; Hollander & Wolfe, 1999;
Sprent & Smeeton, 2007).
The “Pitman efficiency” (or power) of Kendall's

Tau equals .91, the same as for SpearmanRho, so for
well-conforming data, Pearson R requires a sample
91% the size of Tau to achieve the same power.
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When data do not meet parametric assumptions,
thenTau can exceed PearsonR in power (to a Pitman
efficiency of 1.27; Sprent & Smeeton, 2007).

MW-U and KRC Equivalence
From the foregoing, Tau trend and MW-U non-
overlap are the same. By formula, MW-U's
“percent of nonoverlapping data” = (UL – US) /
(UL +US) = S / #pairs = (#pos – #neg) / #pairs = Tau.
MW-U conducted on two groups and Tau con-
ducted on a single time series are calculated the
same way, have the same sampling distribution,
and can be interpreted in the same manner. Percent
of nonoverlapping or “improving” data between
two phases is calculated the same as percent of
improving data within a single phase. In both cases,
all possible pairs of data are compared in a time-
forward direction to obtain a net improvement
sum, S. Both KRC and MW-U analyses can be
interpreted as nonoverlap or as trendedness. This
manuscript emphasizes the trendedness interpreta-
tion for both KRC and MW-U.
KRC calculates not linear trend, but rather

monotonic trendedness, or the tendency for scores
to improve over time, following any profile or
configuration (Conover, 1999; Hollander and
Wolfe, 1999; Sprent& Smeeton, 2007). Monotonic
trend does not assume that a straight line will be a
good summary of the path of improvement. So Tau
reflects both monotonic trend and the percent of
data that improve over time—they are the same.
And both of these can also interpret trend between
phases as “percent of data that improve in a time
forward (from Phase A to B) direction,” which is
also “percent of nonoverlapping data.” The one
computational difference betweenMW-U and KRC
is that KRC stipulates a single N (number of data
pairs), whereasMW-U requires anN for each phase
(n1 and n2) which affects calculation only of the
variance and standard error.

KRC and MW-U Inference Tests
Both KRC and MW-U rely on the S distribution for
significance testing; “a test of Tau is a test of U”
(Armitage et al., 2002, p. 279). For smaller samples
ofN b10, both KRC andMW-U should use an exact
permutation test, which is commonly offered in
statistical software packages. Exact inference tables
for Nb10 are also available in nonparametric and
biostatistics textbooks. ForN≥10, the S distribution
rapidly approaches normal, so the test statistic z=S /
SES can be used for both KRC and MW-U. From
KRC, SES is usually output directly. From MW-U,
only SErank is output directly, and SES=2×SErank.
Many KRC and MW-U modules provide full

significance test output: SES, z scores, and exact

permutation p values. An accurate SES for non-
overlap between two phases can be obtained from
either a MW-U or KRC module. This paper uses a
KRCmodule for all analyses, because only KRC can
also measure within-phase trend. To test an A versus
B phase shift by a KRC module, two variables are
entered: scores, and a categorical phase variable that
is “dummy coded” (0 / 1) or by a mixed code
(explained later). The output from KRC for S and
SES will be accurate, and will match output from an
MW-U module.Note: The KRC output for Tau will
not be accurate because of the use of the dummy
code, so Tau must be calculated by hand. The name
given to this new analysis merging trend and
nonoverlapping data is “Tau-U,” after its parents:
Kendall's Tau and Mann-Whitney U.

Example AB Design Data
Tau-U is best described by application to sample
data. Fig. 2a is the same short AB design graph
(A: 2, 3, 5, 3; B: 4, 5, 5, 7, 6) from Fig. 1a. Beside it,

B A

6 7 5 5  4 3 5 3 2
2 + + + + + + + + 0
3 + + + + + T + 0 

A 5 + + T T – – 0  
3 + + + + + 0 
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1 2 3 4 5 6 7 8 9

A1 B
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FIGURE 2 Example time series data with (a) A and B phase, (b)
difference matrix of Fig. 2a data with all pairwise data comparisons,
made in a “time-forward” direction. The rectangular box in the
center represents between-phase data, and the two adjacent
rectangular areas represent within Phase A or B.
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Fig. 2b is a difference matrix of all pairwise data
comparisons made in a “time-forward” direction.
The left margin of Fig. 2b contains the data series,
and atop the matrix is the same series, in reverse
order. A matrix like this is used to explain
Kendall's Tau in biostatistics and nonparametric
textbooks. But the difference in this figure is that
the data have been segmented or partitioned
between Phases A and B, to distinguish the
pairwise comparisons that contribute to the A
versus B contrast (gray-shaded rectangle) from
those that contribute to within-phase trend (the
two triangles).
The Fig. 2b matrix contains “+” at the intersect

of each data pair for which the later value is larger,
and “–” when the later value is smaller. Ties,
denoted T, are not analyzed in this paper, but
would be included to calculate a variation of Tau,
Tau-b. Tau was chosen for this paper over Tau-b
for three reasons: (a) only Tau offers exact
permutation tests, (b) Tau is simpler to compute,
and (c) Tau is more conservative. The difference
between Tau and Tau-b tends to be minimal unless
there are many ties, which will inflate Tau-b
(Armitage et al., 2002). Both Tau and Tau-b are
well-respected indices.
Fig. 2b shows the full matrix of N(N – 1) / 2=

(9×8) / 2=36 pairs within three partitions. The
figure includes the A versus B nonoverlap contrast
(rectangle in upper left), trend within Phase A
(upper-right triangle), and trend within Phase B
(lower-left triangle). These three components com-
prise all sources of trend in the full series of 9 data
points. By considering only selected components,
we may draw conclusions about intervention
effectiveness. From the rectangle alone, phase
nonoverlap can be calculated. The rectangle and
lower triangle (Phase B) together summarize two
valued outcomes: phase nonoverlap and Phase B
improvement trend. Subtracting the upper triangle
(Phase A) from the rectangle gives nonoverlap with
Phase A trend controlled. Subtracting the upper
triangle from the combined rectangle and lower
triangle summarizes nonoverlap plus Phase B trend,
after control of Phase A trend.
The Fig. 2b matrix strengthens the rationale for

mixing phase nonoverlap with monotonic trend.
Tau for each of the three matrix components can be
summarized by S / #pairs, with similarly computed
SES. The three components can be added and
subtracted via S, weighted by number of paired
comparisons (#pairs). These #pairs can be counted
in Fig. 2b: 20 for phase nonoverlap, 6 for A trend,
and 10 for B trend. Thus, the A versus B contrast is
weighted more heavily than the two within-phase
trends when considering overall trendedness of the

data. The Fig. 2b matrix is presented as a logic
model; it is not needed for Tau-U calculations.
The A versus B rectangle in the upper-left corner of

Fig. 2b contains results of nA×nB=4×5=20 paired
comparisons. For this contrast, S=(#pos – #neg)=
17 – 1=16, and Tau=S / #pairs=16 / 20=.80. This
phase contrast can be analyzed alone, in a MW-U
module, yielding UL=18, US=2, S=16, SES=
(2×SErank)=(2×3.996)=7.99, z=(S / SES)=2.01,
and two-tailed p=.045. The MW-U module does
not provide Tau, but it is calculated as (UL – US) /
(UL – US)=(18 – 2) / (18 + 2)= .80. Identical results
are obtained from analyzing the same contrast in a
KRC module (StatsDirect was used, with phase
coded 0 / 1): S=16, SES=7.99, z=16 / 7.99=2.00,
two-tailed p=.045, and the exact permutation
(for Nb10) two-sided p=.119. Note: The Tau
value output from this KRC analysis (with phase
coded 0 / 1) will not be accurate, so it must be
calculated as S / #pairs = 16 / 20=.80. The remaining
two triangular partitions of Fig. 1b represent trends
within Phase A (upper right) and Phase B (lower left).
Each can be analyzed separately within KRC to
confirm S and Tau values. For the Phase A triangle:
S=(4 –1)=3, Tau= S / #pairs=3 / 6=.50, SES=2.769,
z=1.08, two-sided p=.28, and exact permutation
p=.33. For the Phase B triangle: S=(8 – 1)=7,
Tau=S / #pairs=7 / 10=.70; SES=3.96, z=1.77,
two-tailed p=.007, and exact p=.08.
Finally, demonstrating the additivity of the matrix

components, a single traditional KRC analysis
conducted on the full data series of N=9 (time and
scores input) is included in Table 1. The results are
#pairs=36, #pos=29, #neg=3, S=26, Tau=26 /
36 = .722, SES = 9.345, approximate z = 2.78,
p=.008, exact p=.006. Table 1 contains six data
columns, all with computer output data (StatsDir-
ect). The first three data columns are for the three
partitions of the matrix, and the fourth column
pertains to the full data series. Partitioning thematrix
is analogous to partitioning an ordinary least squares
variance matrix. Across the first three data columns,
the values #pairs, #pos, #neg, and S are strictly
additive. Tau values are additive after proper
weighting by their respective #pairs. SDS are not
additive, but their squares, VARS, are practically
additive. The sum of the first three VARS=63.89
+7.67 + 15.67=87.23, and (87.23)1/2 =9.34, which
equals the SDS value output by a KRC module for
the full series. The final two data columns are
described later.

interpretation of tau-u results

Tau-U is actually a family of four indices, three of
which include nonoverlap with trend together: (a) A
versus B phase nonoverlap, (b) nonoverlap and
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Phase B trend together, (c) nonoverlap with baseline
trend controlled, and (d) nonoverlap and Phase B
trend with baseline trend controlled. The first of
these, A versus B, is very similar to the nonoverlap
of all pairs (NAP; Parker & Vannest, 2009). This
paper emphasizes that the A versus B results may be
interpreted either as nonoverlap: “percent of
nonoverlap between phases,” or as trendedness:
“percent of data showing improvement between
phases.” The second summary, nonoverlap and
Phase B trend together, is “percent of data showing
improvement between A and B, and within Phase
B.” It is analogous in regression to predicting scores
from both phases and a dummy-coded time
variable with the Phase A portion filled with the
Phase A mean, and the Phase B portion filled with
the time values: (A: 3.3, 3.3, 3.3, 3.3; B: 5, 6, 7, 8,
9). There is an important difference in how trend
behaves in Tau-U versus regression analysis. In
regression, including time as a predictor with phase
(with a Time × Phase interaction) always equals or
improves on results from phase as the sole
predictor. But in Tau-U, including a Phase B trend
with NAP nonoverlap can easily reduce results.
That is because in the Tau-U additive model, by
including Phase B trend, one also includes addi-
tional variance beyond that in the phase nonoverlap
contrast only.
The third summary, “nonoverlap with baseline

trend controlled,” is most related to the Allison
regression control method (Allison & Gorman,
1993; Faith et al., 1997) by partialling Phase A
trend out of the entire data series. The Allison
method results in zero Phase A trend, so the final
analysis tests only the mean in Phase A (and a
reduced trend in Phase B). But the Tau-U results
need to be interpreted differently, due to the
different control method. Regression trend control
is via a vector, whereas Tau-U controls for only a
fixed amount of trendedness, limited by the length

(#pairs) of Phase A. Tau-U trend control thus has a
smaller impact on results, which is considered an
advantage, given concerns expressed earlier about
baseline trend over control. Compared to regres-
sion control by vector, the Tau-U subtraction is
constrained by amount of Phase A trend, by Phase
A length, and by the relative lengths of Phase A and
Phase B; therefore, Tau-U does not control baseline
trendedness beyond rational y-scale limits. But the
final summaries from regression and Tau-U are
defined similarly.
The fourth Tau-U summary, “nonoverlap with

Phase B trend with baseline trend controlled,”
simply adds to the third model the weighted Phase B
trend. As with the second and third models, adding
within-phase trend also adds variance from a new
partition in the agreement matrix, so it can increase
or reduce results from a simpler model. Adding
Phase B trend to the A versus B contrast may
increase or decrease effect size results. The analog to
this fourth Tau-U is the Allison baseline correction
technique, the final step of which is an MTS
(Mean×Trend Shift) regression analysis (Allison
& Gorman, 1993; Faith et al., 1997). The Allison
MTS R2 can be interpreted as “the proportion of
variance accounted for by AB shift and B trend,
after control of Phase A trend.” The Tau-U
summary index is interpreted as “the percent of
data that improve over time considering both phase
nonoverlap and Phase B trend, after control of
Phase A trend.”

Answering Questions About Improvement
Tau-U, the index of between and within-phase
trend, is useful for answering at least four research
questions in SCR. The first two presented below
require only simple KRC or MW-U analyses, so are
not new or novel. The novel Tau-U is needed to
answer the third and fourth questions, which
combine within-phase monotonic trend and AB

Table 1
Example Tau-U Analysis

Partitions of Matrix Full Data Matrix Tau-U Analysis

A vs. B TrendA TrendB A vs. B + trendB A vs. B + trendB – trendA

#pairs 20 6 10 36 30 36
#pos 17 4 8 29 25 26
#neg 1 1 1 3 3 6
S 16 3 7 26 23 20
Tau 16 / 20=.80 3 / 6= .50 7 / 10 =. 70 26 / 36=.72 23 / 30=.77 20 / 36=.56
SDS 7.99 2.79 3.96 9.35 8.91 9.35
VARS 63.89 7.67 15.67 87.33 87.22 87.33
Z 2.00 1.08 1.77 2.78 2.58 2.14
p (Z based) .05 .28 .007 .008 .0098 .032
p (exact) .12 .33 .08 .006 .0127 .045
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nonoverlap in a single improvement index. Each
question is followed by data input procedure,
output, and the solution.

1. What is the improvement trend during
Phase B?
a. Input: To KRC, variables score and time
for Phase B only.

b. Output: The improvement trend (Tau)
should be output. If not, calculate Tau
as S / #pairs, where #pairs=n(n – 1) / 2=
5(5 – 1) / 2=10.

c. Solution: Here, Tau=7 / 10=.70, so 70%
of the intervention phase data show
improvement, and this improvement
trend is borderline significant (exact
p=.08).

2. What is the improvement in nonoverlapping
data between Phase A and B? (KRC directions
are given here. The same results are also
obtainable from MW-U.)
a. Input: To KRC, variables score and phase
(coded 0 / 1).

b. Output: Collect S=16, and calculate #pairs
as nA×nB=4×5=20. Calculate Tau=S /
#pairs=16 / 20=.80. The SDS (7.99), z
(2.00), and p values from KRC are output
accurately (but neither Tau nor #ties will be
accurate).

c. Solution: From Phase A to B, data show an
80% improvement trend (or 80% non-
overlap), which is statistically significant at
pb .05 from a normal distribution approx-
imation, but at only p=.12 from an exact
permutation test.

3. What is the overall client improvement in A
versus B contrast plus Phase B trend?
a. Input: To KRC, score and a modified time
variable composed of zeros for Phase A,
and the normal time sequence for Phase B:
(0, 0, 0, 0│5, 6, 7, 8, 9).

b. Output: Obtain S=(25 – 2)=23. Add #pairs
for A versus B (4×5=20) to #pairs for
B (5×4) / 2=10 to obtain total #pairs=30.
Calculate Tau=S / #pairs=23 / 30=.77. As
output from KRC, the SDS (8.908), z
(2.581), and p values are accurate.

c. Solution: Data showed 77% overall im-
provement between phases and during
treatment. This amount of improvement
is significant at p=.0098, or at p=.0127,
using an exact inference test.

4. What is the overall client improvement,
controlling for preexisting (baseline) improve-
ment trend? Phase A trend can be “con-
trolled” through the entire data series by

reversing its sign, and then recomputing the
full trend. (Note: Reversing signs affects only S
and Tau, not SDS, z, or p.) This technique
imposes a rational maximum or ceiling on
control (unlike OLS regression analysis). The
trend reduction cannot exceed Phase A trend's
negative value. There are multiple ways to do
this Tau-U analysis, all with the same result
(see Table 1).Two are presented here.
Control Method 1:
a. Input: In the time variable, backward-
code Phase A: 4, 3, 2, 1. Maintain the
true time values for Phase B: 5, 6, 7, 8,
9. Conduct a KRC analysis.

b. Output: All program output will be
accurate: #pos (26), #neg (6), S
(20), SDS (9.345), z (2.14), and
inference tests. The Tau value will be
accurate, but may be the Tau-b version,
depending on the software used. So it is
best to calculate your own Tau=S /
#pairs=20 / 36=.56.

c. Solution: Controlling for phase A im-
provement trend, overall improvement
(in both A vs B and within-phase B
trend) is reduced to 56%, with, approx-
imate p= .03, and exact p= .045.

Control Method 2: Replace the Phase A S
value (+3) with its negative (–3). Then
recalculate Tau for the full matrix as S /
#pairs= (16 + 7 – 3) / 36= .56. The SES
does not change from that of the full
model, so output is still z=S / SES=20 /
9.35=2.14.

A Second Example
The second example is an ABA reversal design of 10
data points total, made short to permit easy
replication. Figs. 3a and 3b show the graph and
its Tau matrix. The matrix includes six partitions:
three phase trends (A1, B, A2) and three phase
contrasts (A1 vs. B, B vs. A2, A1 vs. A2), of which the
last, A1 versus A2, is not relevant. Note that the
matrix is not essential to calculations, and is
included here only as a heuristic.
For this second data set, only the second and

third questions are answered, and more briefly:

1. What is the improvement between phases?
This question implies both B versus A1 and B
versus A2 contrasts. In SCR, contrasts of
adjacent phases are usually defensible, but
between separated phases often are not.
a. Input: To KRC, scores and time. Time is
coded 0, 0, 0│1, 1, 1, 1│0, 0, 0.

b. Output: Collect S (21), and calculate
#pairs as (NA1×NB) + (NB×NA2)=24.
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The analysis does not contrast PhasesNA1
and NA2. Tau=S / #pairs=21 / 24=.88.
Output for SDS (9.21), z (2.28), and p will
be accurate.

c. Solution: Phase B contrasted with A1 and
A2 shows over 87% improvement, signif-
icant at p=.02 (exact p=.07).

2. What is the overall improvement, considering
phase contrasts plus growth within the
intervention phase?
a. Input: To KRC, scores and phase, coded
0, 0, 0│4, 5, 6, 7│0, 0, 0.

b. Output: Collect S (26). Total #pairs
expands from the first analysis to include
within-Phase B trend: (4×3) / 2=6. So
#pairs=12 + 12 + 6=30. Calculate Tau=
S / #pairs=26 / 30=.87. Output for
SDS (9.63), z (2.70), and pwill be accurate.

c. Solution: Overall improvement trend
(between phases plus within Phase B)
equals 87%, which is significant at approx-
imate p=.007, or by exact test, p=.017.
Note that this is the same Tau calculated
immediately above, but with a stronger p
value. The 87% Tau did not change with
the addition of Phase B trend because it
existed at the same level in both B trend and

AB contrast. Our gain here by including
Phase B trend is in greater statistical power;
the active N in the analysis increases, and
with it the number of comparisons, yielding
a more favorable p value.

3. What is the overall improvement, considering
phase contrasts and intervention phase trend,
and also controlling for initial baseline trend?
(Note: In reality this baseline trend is not
pronounced or reliable so we would find its
control difficult to justify in real life. It is
controlled here only to demonstrate the
procedure.) There are also multiple ways to
conduct this analysis, but only one method is
demonstrated here.
a. Input: First run the KRC, as above on data
coded 0, 0, 0│4, 5, 6, 7│0, 0, 0, which
results in Tau=S / #pairs=26 / 30=.87.

b. Output: Next obtain the S value for Phase
A only: S=2 – 1=1. Change its sign to
negative, and combine with the previous
result: Tau=(26 – 1) / 30=25 / 30=.83.

c. Solution: Overall improvement is 83%,
including two phase shifts, Phase B improve-
ment, and controlling for Phase A trend.

field testing the tau-u

The purpose of a field test is to give potential users a
sense of how Tau-U performs with typical data,
particularly how much of a change is caused by
including Phase B trend with AB nonoverlap, and
also by the optional Phase A trend control. These
two features mark the difference between the new
Tau-U and the two simpler indices: Tau trend (from
KRC), and phase nonoverlap (from MW-U), which
is quite similar to NAP (Parker & Vannest, 2009).
Tau nonoverlap scores correlated at Rho=.92 with
regression (or t-test based) R2 effect sizes, at
Rho=.76 to .93 with other effect sizes, and at
Rho=.84 with visual judgments of client improve-
ment (Parker & Vannest, 2009). Tau-U is new, and
readers need to know whether and how much those
results change by adding or controlling for trend.
Field testing consisted of applying Tau-U to 382

simple AB contrasts from published articles. The
graphs had been digitized in stages over recent
years, from articles published in the past 25 years.
This was a convenience sample, including all
articles that had clearly digitizable graphs, without
regard for design type, target behavior, or inter-
vention. Articles included a mix of academic and
behavioral outcomes. Leading journals in special
education, school psychology, and behavioral
psychology were well represented in this conve-
nience sample. For complex, multiphase designs,
only the initial A and B phases were included.

A2   B   A1 

3 3 5 7 7 6 4 3 4 2
2 + + + + + + + + + 0

A1 4 – – + + + + T – 0 
3 T T + + + + + 0 
4 – – + + + + 0  

B 6 – – – + + 0 
 7 – – – T 0 

7 – – – 0  
5 – – 0 

A2 3 T 0 
3 0 

8

7

6

5

4

3

2

1
1 32 4 5 6 7 8 9 10

A1 A2B
a

b

FIGURE 3 Example time series data with (a) A1, B, and A2

phases (b) difference matrix of Fig. 3a data with all pairwise data
comparisons.
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Details of the collection and digitizing have been
previously reported (Parker et al., 2005).
Questions that potential users of Tau-U would

likely have include (1) What is the impact of adding
Phase B trend to nonoverlap? (2) What are the
distribution characteristics of a Tau-U (overlap plus
B trend) index? (3) What is the need for controlling
baseline trend, and what is the impact? and (4) How
does Tau-U respond with autocorrelated data?

Question 1: What is the impact of adding Phase B
trend to nonoverlap? The influence of Phase B
trend on an A versus B (AB) contrast can be
calculated by the weight of the Phase B trend
(#pairs) relative to the weight of the A versus B
contrast. Suppose nA=8 and nB=6, so the AB
contrast has a weight of 8×6=48 pairs. The
weight for Phase B trend only, calculated from its
nB(nB – 1) / 2 pairs, equals 6×5 / 2=15. So Phase B
trend contributes 15 / 15 + 48=24% of the final
Tau-U. Suppose the AB contrast yields Tau=.50,
and the Phase B Tau=.60. Tau-U for these two
sources of improvement together (AB + B trend)
will be .50×76% + .60×24%=.52. Though Phase
B has a stronger trend, its influence is limited by
its fewer paired comparisons than in the AB
contrast.
The field test showed within-phase trends to be

few and weak, compared to nonoverlap magnitudes
from AB contrasts. Only 176 of the 382 data sets
(46%) had AB contrasts in the same direction as
their Phase B trend. Of these 176, including B trend
with the AB contrast caused a smaller Tau-U index
in 74% (130 data sets). Tau-U increased due to
adding Phase B trend in only 26% (46 data sets). In
those 130 data sets where trend decreased, it
decreased by 15%. In the 46 where it increased, it
did so by a larger 56%, on average.

A second impact of including Phase B trend was
on significance levels. Adding Phase B to an AB
contrast increased the number of paired compar-
isons (#pairs) by 23%, on average. This improved p
values by an average of .02 to .05, depending on the
overall N and the ratio of nA to nB. Results
previously not significant at p=.10 gained signifi-
cance at p=.05. The improvement was greatest for
the shorter data sets.

Question 2: What are the distribution character-
istics of a Tau-U (overlap plus B trend) index? Tau-
U's usefulness depends partly on its ability to
discriminate among results from different studies.
Given a large sample, a “uniform probability plot”
can indicate discriminability (Cleveland, 1985).
Strong discriminability is seen as a diagonal line,
without floor or ceiling effects, and without gaps,
clumping, or flat segments (Chambers, Cleveland,
Kleiner, & Tukey, 1983; Hintze, 2006). Fig. 4
contains a probability plot comparing the 176
data sets with Phase B trends and AB contrasts in
the same direction.
Tau-U presents a nearly ideal profile, compared to

the simpler AB nonoverlap, which has a pronounced
ceiling around Tau-U's 75th percentile. That ceiling is
a shortcoming of all nonoverlap techniques; beyond
complete nonoverlap, effect sizes cannot increase.
Tau-U shows no ceiling or floor effects, gaps, or
clumping. Noteworthy in Fig. 4 are the generally
higher scores from the simple AB contrast. Consid-
ering that only nonoverlap gives larger results, being
sensitive also to phase trend typically gives more
modest results. The differences between AB contrasts
and Tau-U appear large on the graph; .10 to .20
points over much of the distribution.
Table 2 gives quartile markers for the same

results (N=176) displayed in Fig. 4. The first two
rows of the table are calculated from actual values
and the last two from absolute values.
Table 2 confirms that the AB contrast hits a

ceiling around its 75th percentile. It also confirms
the score spread of nearly .1 to .2 points between
the AB contrast and Tau-U for the middle half of
the scores. These smaller scores are closer to R and
R2 scores for the same data. At each of the five

.10

.20

.30

.40

.60

.70

.80

.90

.1 .2 .3 .4 .6 .7 .8 .9 .99

1.00

0

Kendall’s Tau

Percentile Rank

AB contrast

AB + B trend

FIGURE 4 Probability plot comparing 176 data sets with Phase
B trends and AB contrasts in the same direction.

Table 2
Quartile Markers for AB Contrast and Tau-U (with B Trend)

Analysis Quartile

10th 25th 50th 75th 90th

AB contrast –.997 –.87 .96 .92 1.00
Tau-U –.80 –.62 .16 .73 .91
abs AB contrast .26 .60 .88 1.0 1.00
abs Tau-U .29 .48 .66 .82 .93
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quartile markers, Pearson R always fell between the
AB contrast and Tau-U.

Question 3: What is the need for controlling
baseline trend, and what is the impact? A trend
level of .40 or 40% was selected ad hoc as a level
high enough to be of interest in most data sets.
Tau=.40 represents the 75th percentile for the
published Phase A trends, that is, 25% of the data
had trends at ± .40 or more extreme. Only those
data sets with Tau ≥ .40 in both Phase A and in the
AB contrast (and both trends in the same direction)
were selected for baseline trend control. That
selective criteria resulted in only 31 candidates for
Phase A trend control.
Removing baseline trends had the effect of

reducing the simpler (AB + Btrend) values from a
median of .91 to .62, a reduction of .29 Tau points,
which is 32% median reduction from the original
AB + Btrend value. The IQR range around that 32%
was 10 to 55%. Considering that these 31 data sets
included the most extreme positive Phase A trends,
a 10 to 55% change is not large. These results were
compared with the impact of Allison et al.
regression control (Allison & Gorman, 1993;
Faith et al., 1997). The same 31 data sets
underwent Phase A regression (semipartialling)
control. The regression control nearly cut in half
the AB + Btrend results, the median R2 dropping
from .74 to .38 or 48% reduction. The actual
difference in effect size reduction by regression
control (48%) and Tau-U control (36%) is likely
even greater than obtained. The Tau-based selec-
tion of these 31 data sets maximized the likelihood
for Tau change, not for R2 change. Had R2

selection criteria been used, the regression control
would show relatively greater change, and Tau-U
relatively less change.

Question 4: How does Tau-U respond with auto-
correlated data? A statistical method is robust to
rauto if its magnitude and its significance do not vary
greatly with small and medium levels of positive
rauto. Robustness to rauto is often ascertained by
Monte Carlo studies, but those studies are problem-
atic in SCR, where 100 studies may be represented
by almost as many different scales, both interval and
ordinal, both categorical and continuous, some with
little central tendency, and all varying in upper and
lower limits. Simulating that scale range may not be
practicable. Therefore, this study evaluated Tau-U
robustness to rauto by checking it individually on the
365 published AB data sets. rauto was checked in
data sets before and after they had been cleansed of
rauto by the best established method, the ARIMA
Lag-1 (1, 0, 0) model. The primary criterion for

robustness to rauto was minimal change in the Tau-U
result from before to after cleansing. As noted
earlier, another criterion, impact on standard error,
cannot be applied to Tau-U. A second criterion that
was included, but considered only informally, was
the extent of distortion of graphed data due to rauto
removal.
rauto cleansing was applied to only those data sets

showing positive levels N+.20. Of the total 367 data
sets, 151 (41%) showed large (N .20) negative rauto,
86 (23%) showed small (b .20) rauto, 58 (16%)
showed small positive rauto, and 72 (20%) had large
(N .20) rauto that needed cleansing.
The 72 data sets were cleansed via an iterative

ARIMA maximum likelihood analysis, employing
a Lag-1 autocorrelation model for each phase
separately, after detrending each phase for linear
growth. The ARIMA cleansing was largely suc-
cessful, as seen by comparing the distribution of
rauto percentiles on (original, cleansed) scores: 10th
(.23, –.06), 25th (.30, .00), 50th (.44, .06), 75th
(.64, .11), and 90th (.71, .19). Of the 72 data sets
for which rauto cleansing was attempted, it was not
wholly successful with only six, which remained
with rauto above +.20. Those six data sets all began
with high, positive levels of rauto, five of them at
rauto –.57 or above.
The question of change in Tau-U values is

addressed by Table 3. Table 3 shows percentile
distributions of Tau-U values before and after
cleansing, along with the amount and percent of
change (percent of original Tau-U).
There was no systematic direction of Tau-U

change from before to after cleansing rauto. And for
approximately 75% of the data sets, changes in
Tau-U would be considered minor. However, for
25% of the cleansed data series, Tau-U value
changes were substantial.
Fig. 5 illustrates for informal scrutiny typical

changes in graph configuration from original to
cleansed data. The four graphs represent successful
removal of different initial levels of rauto. Original
scores are circles, and cleansed scores are triangles.
Fig. 5a shows initially low rauto of .21 reduced to
.01 after cleansing, but Tau-U changed .65 to .56.
In Fig. 5b, rauto was controlled from .34 to –.04,

Table 3
Percentile Distributions of Tau-U with Autocorrelation Cleansing

Percentile

10th 25th 50th 75th 90th

Original Tau-U .39 .72 .95 1.00 1.00
Cleansed Tau-U .34 .75 .95 .99 1.00
Change amount .00 .00 .01 .04 .14
Change percent .00 .00 .01 .07 .46
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and NAP changed little, from .92 to .94. In Fig. 5c,
rauto of .51 dropped to .08, and Tau-U changed
only from .48 to .42. Finally, Fig. 5d shows high
rauto of .64 eliminated to –.01, and Tau-U changed
very little, from .96 to .95.
Readers can judge whether the graph distortion

due to cleansing is tolerable. In general, the greater
the rauto cleansed, the greater the graph distortion.
However, changes were often restricted to certain
graph segments, as in Fig. 5d. In Fig. 5d, the change
is nearly all in Phase B, with Phase A change barely
noticeable.

Discussion
This paper presented Tau-U, a family of indices that
can combine Phase AB nonoverlap with Phase B
trend, and that permit control of undesirable
positive Phase A trend. Tau-U was presented as
an alternative to both regression-based models and
to simpler dominance-based (nonoverlap) models.
It was demonstrated that nonoverlap between

phases and trend within phases can both be
calculated from a single statistic, KRC, and both
with an S sampling distribution. It was demonstrat-
ed and documented by expert sources that the KRC
trend test and MW-U test between groups are
statistically the same.
Tau-U was presented in the context of a rapidly

developing field of statistical analysis for single-case
research. The two existing analytic models of
regression and simple nonoverlap or dominance
were both shown to have weaknesses. Regression,
the most comprehensive and flexible of the two,
violates data and scale-type assumptions more often
than not. Nonoverlap models lack statistical power,
do not discriminate well among the more successful
interventions, and cannot give credit for improve-
ment trend during an intervention. A final problem
with regressionwas how it controls positive baseline
trend (through semipartial correlation). That meth-
od of control was argued to (a) produce extreme
results, (b) not attend to measurement error of the
Phase A trend, (c) yield sometimes nonsensical

-2

-1

1

2

4

5

7

8

15

19

22

26

29

33

36

40

0

1

2

3

5

6

7

8

0 2 3 5 7 9 10 12 14 15 17 19 21 22 24 0 2 3 5 7 9 10 12 14 15 17 19 21 22 24
0

4

9

13

17

21

26

30

0 3 5 8 11 13 16 19 21 24 26 29 32 34 37 0 2 3 5 6 8 9 11 13 14 16 17 19 20 22

a b

c d

FIGURE 5 Shows four example data sets with varying degrees of autocorrelation. This figure also illustrates the
amount of distortion that occurs in data when (a) low rauto, (b) medium-low rauto, (c) high-medium rauto, and
(d) high rauto is cleansed.
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results, and (d) rely on a questionable assumption of
continuing trend.
Tau-U can potentially address the limitations of

both regression and of simple AB nonoverlap. Like
regression, it is a complete measure, including both
trend and level. In addition, it is distribution free,
and controls positive baseline trend in a more
defensible manner than does the regression-based
Allison et al. approach (Allison & Gorman, 1993;
Faith et al., 1997). Tau-U is analogous to the
Allison et al. regression model where Phase A trend
has been controlled and both AB mean shift and the
remaining Phase B trend contribute to the final R2.
But trendedness in Tau-U is dissimilar to regression
slope; it is more closely related to R or R2. Similar
to R2, Tau-U's trendedness is the percent of data
that improve over time, but monotonically, in any
profile—not only in a straight line.
Like other nonoverlap techniques, Tau-U is

“distribution free,” with minimal data assumptions.
But Tau-U containing both AB nonoverlap and
Phase B trend is unlikely to hit a 100%ceiling, which
is not the case with other simpler nonoverlap
techniques. This characteristic gave Tau-U superior
discriminating power among our sample of pub-
lished data series, compared to a simple AB
nonoverlap analysis that could not discriminate
among the top quarter of results.
Inclusion of Phase B trend typically decreased

rather than increased Tau-U. By adding Phase B
trend we also add additional variance (#pairs). The
weighted S for A versus B nonoverlap tended to be
larger than the weighted S for within-phase trend. A
small improvement trend of 30% in Phase B
combined with a typically larger, for example,
90% nonoverlap, will result in a Tau-U between
these two figures, though closer to the 90%. Also,
the negative impact of a weak Phase B improvement
trend is limited by the proportional length of Phase
B. For two phases of 5 data points each, negative
impact of a very small positive B trend is limited to its
proportional weight (#pairs), which is 25 pairs for
the AB contrast, and only 10 pairs for Phase B trend.
Likewise, controlling trend from Phase A is

conservative and measured. Unlike regression,
baseline trend is not a vector that is assumed to
continue ad infinitum. The impact of removing
trend is limited by the Phase A length, that is, its
number of paired comparisons. In most SCR
studies the interventionist anticipates both a level
shift/jump in performance and an improvement
trend into the future. With a simple mean shift,
median shift, or nonoverlap index, only part of that
expectation is being measured. Failure to measure
Phase B improvement trend in the effect size risks
losing focus on improvement rate.

Tau-U was only somewhat influenced by auto-
correlation (Rauto). Tau-U magnitude and graph
configurations were monitored, but only the first
was formally examined. For 75% of the data sets
with dangerous levels of autocorrelation, its re-
moval changed Tau-U values little. But for the
remaining 25% of the 72 data sets, changes were
larger. Thus, although Tau-U is “distribution free,”
it is not impervious to Lag-1 autocorrelation. But to
keep perspective on the problem, the Tau-U values
that showed substantial change from removing
dangerous levels of Rauto numbered only 18 out of
367, or less than 5% of the original sample. Rauto
does not impact Tau-U's standard error (and
significance level), as its SE is based solely on the
number of data points per phase.
There are cases where Tau-U with B trend need

not be used. If a positive trend is impossible, quite
unlikely, uninteresting, or undesirable, then B trend
need not be included in an effect size. Also, if Phase B
trend is impossible because performance has hit a
scale ceiling, then Tau-B should not be used.
Otherwise, for those many cases where the interven-
tion should impact both level and rate of improve-
ment, B trend should be included in the effect size.
As an exposition and field test of Tau-U, this

article has several limitations. First, this is a
substantially new model, and parallels drawn to
regression may seem stretched. For example, for a
given AB dataset, results (SSmodel, R and R

2) from a
simple mean shift (SMS) regression model, will
always be smaller than those from a mean + trend
model (MTS). That is not the case with Tau-U;
adding trend can easily drop Tau-U values. That is
because in regression both models reference the
same SStot, whereas in Tau-U's S variance model,
the total number of pairs (analogous to total
variance) varies depending on which partitions of
the matrix are included. This fundamental differ-
ence between an ANOVA variance matrix and the S
difference matrix may take some getting used to.
Another limitation was the field test to demon-

strate Tau-U's baseline control effects. It included
only one set of analyses on a sample of 176, and
lacked a graphic display to demonstrate the impact
of baseline trend control. To date we have not been
able to construct such a display. A related limitation
is that Tau-U trend control was compared only with
the Allison et al. semipartialling approach (Allison
& Gorman, 1993; Faith et al., 1997). Other
variance-based trend control techniques are now
being developed for growth modeling within
multilevel models (MLM) and structural equation
models (SEM). They were not included in this
paper, as they have not yet been adequately proved
with real SCR data, as the Allison model has.
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Although linear regression is still an important
method for SCR analysis, maximum likelihood
algorithms may side step most ordinary least squares
data assumptions. Furthermore, there is much recent
development in nonparametric trend analysis, which
can handle data with only ordinal level properties.
The field ismoving quickly. Given the likelihood that
multilevel modeling and possibly structural equation
modeling will be successfully adapted to single-case
research in the near future, our primary concern is
that the effects of those analyses on an individual
client's data graph be made transparent. Validation
by visual analysis is especially important with
increasingly complex analyses.
A final limitation is that Tau-U's application to

more complex designs (which predominate the
literature) was not demonstrated. We do not antic-
ipate difficulty in doing so; the most attractive and
generally usable technique seems to be throughmeta-
analysis software, in which each AB contrast is a
separate strata within a fixed-effects model. Free
downloadable software such asWinPEPI (Abramson,
2010) automatically weights results for each series by
the inverse of its variance, to obtain an omnibus effect
size with narrower confidence intervals.
In summary, Tau-U is an index with more

statistical power than any other nonoverlap (dom-
inance) index known. It also is the most discrimi-
nating, by not hitting the 100% nonoverlap ceiling
that challenges much SCR research. The distribu-
tion of Tau-U is nearly ideal, like regression
analyses, and unlike simple nonoverlap. Tau-U is
flexible in that it can calculate trend only, non-
overlap between phases only, or a combination. Its
abilities to include Phase B trend and to control
unwanted Phase A trend parallel the flexibility of
regression. However, the Tau-U control method is
unique, andmay seem strange to those familiar with
regression. The net effect of controlling Phase A
trend is conservative, causing a smaller impact on
results than we are used to seeing in regression. And
the net effect of adding B trend is an estimate of
trend within and across phases that tends to be
smaller than simple nonoverlap.
Tau-U can be calculated from any KRC module

that provides Kendall's S, also known as “S” or
qscore,q along with p values. Unfortunately, SPSS
does not, but SAS does. For small data sets, exact
permutation-based p values are also desirable.
Remember that the KRC module was not built for
dummy-coded data, so the Tau, #pairs, and #ties
output will not be accurate. S will be accurate,
however, as will its p values, standard error of S,
and variance of S. The user must hand calculate
#pairs, since S / #pairs=Tau. Recall that for an AB
phase contrast, #pairs=nA×nB. If B trend is added,

the additional #pairs=nB×nB – 1 / 2. The most
convenient analytic tool may be the free Web-based
KRC module by Wessa (2008) at http://www.
wessa.net/rwasp_kendall.wasp/. The Web-based
Wessa software (developed from open-source qRq)
outputs accurate S, S variance, and exact p values.
The software with the most complete output we
have found is StatsDirect Ltd. (2010), inexpensive
software from Great Britain for medical research-
ers, with extensive nonparametric capabilities.
Most analyses in this paper were by StatsDirect.
As this article goes to press, we have just

completed a "stand alone" statistical application
for calculating Tau-U onmore complex designs. It is
web-based and will be made freely available. Read-
ers can contact the second author for its web site,
which will be available within weeks from now.
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